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ABSTRACT

Contemporary visual question answering (VQA) models have been

shown to exhibit poor out-of-distribution (OOD) generalization ability due

to their tendency to learn superficial statistical correlations from training

data as opposed to more reliable underlying causal features. This can be ad-

dressed by widening the training distribution through data augmentation,

but though recent advances have been made in generative modelling and

training large foundation models, the application of these methods for data

augmentation targeting robust VQA remains underexplored. This study

proposes a novel approach to ensembling foundation models in order to gen-

erate OOD datapoints to widen the distribution of a training dataset. In

particular, this study proposes a novel token sampling method to perturb

existing image captions into OOD captions, which can then be used to steer

a pretrained text-to-image model. The resulting images along with the orig-

inal questions and answers can then be used to finetune a VQA model that

has only been trained on the original training dataset. This method is em-

pirically shown to lead to robustness improvements; with a BLIP pretrained

on VQA v2.0, finetuning with the study’s generated data introduces a 7.59%

accuracy drop reduction on AQUA and a 1.43% accuracy drop reduction on

VizWiz.
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CHAPTER I

INTRODUCTION

Visual question answering (VQA) is the task of providing a natural language

answer to an open-ended question about a given image [6]. For example,

provided an image of a cow, a model should be able to answer questions like

”What animal is this?”. Training models capable of VQA creates machines

that can see and reason about the world around them. Such machines have

potential applications for visually-impaired people, surveillance authorities,

virtual or robot assistants, etc [4].

State-of-the-art performance for this task is led by deep learning mod-

els, particularly large foundation models finetuned on the task [5, 35, 39, 41,

42]. Common datasets for training and testing include VQA v2.0 [14], GQA

[17], VG [21], and VizWiz [15]. With the exception of zero-shot models, the

standard practice for training a VQA model is to train a model on the train

split of a dataset and validate on the validation split of the same dataset.

1.1 Statement of the Problem

Though progress is continuously made on standardized datasets, many train

and test sets are sampled from similar environments. Thus, recent progress

only measures the ability of a model to perform on independent-and-identi-

cally distributed (IID) data, or data sampled from a similar distribution to

the train set. When used to make inferences on out-of-distribution (OOD)

data, or data outside the training distribution, VQA models exhibit poor

generalization ability [3]. For example, if the training distribution mostly
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includes cows in fields, a VQA model may fail to answer questions about

a cow on a beach. This significantly affects the practicability of deploying

VQA models in real-life scenarios where environments may not be as con-

strained as training environments.

This weakness can be attributed to the tendency to train deep learn-

ing models, and in extension VQA models, as statistical models, which causes

them to rely on input features statistically correlated with target outputs

(e.g. the presence of grass) regardless of whether or not these correlations

would persist under distribution changes (e.g. moving a cow to a beach) [10].

In response to this shortcoming of statistical learning, a paradigm shift to

causal learning has been proposed [33]. In contrast to a statistical learning

approach, a causal learning approach would uncover the underlying causal

structures of the phenomena being modelled (e.g. the features of a cow cause

the presence of the cow). A resulting causal model would thus be robust to

distribution shifts, as it relies on consistent causal features as opposed to

spurious correlations or confounders.

For this reason, causal learning principles have already been applied

to VQA, with one of the most common methods of doing so being counterfac-

tual or interventional image augmentation [1, 8, 36]. Augmentations (e.g.

flipping, saturation changes) have been shown to simulate interventions on

environments, effectively inducing distribution shifts to expose underlying

causal mechanisms [18, 38]. Augmentation has been shown to be a pro-

cess that can be automated without the need for extensive manual labor

and labelling [1]. However, these methods only simulate a minimal number

of interventions per sample, limiting the strength of the distribution shifts

that could be used in training.
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1.2 Research Objectives

This study aims to extend the application of causal learning principles to

VQA. Specifically, this study proposes a novel method for widening the dis-

tributions represented by VQA training data through pretrained language

and generative image models, as well the pre-existing data and metadata.

To evaluate the usefulness of training with this augmentation method, this

study plans to follow Agrawal et al. [3] and train vision-language models

on the proposed dataset, and evaluate the trained models on the test sets of

separate datasets to gauge the model’s ability to maintain performance in

new domains.

1.3 Research Questions

1. How can data augmentation methods be used to intervene on a VQA

dataset and widen its distribution?

2. How does widening the range of artificially-induced distribution shifts

in a train set improve generalization in the OOD setting?

1.4 Scope and Limitations

This study only plans to augment images from a single dataset as opposed

to mixing datasets in order to more effectively gauge out-of-distribution per-

formance; other datasets will be preserved for generalization probing. The

expressiveness of this study’s augmentations will be limited by the avail-

able text descriptions for each image; and the quality of available pretrained

open-source text-to-image synthesis models and language models.
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1.5 Significance of Study

VQA models have the potential to aid visually-impaired people become more

independent and mobile, assist in educational or cultural preservation con-

texts, and extend the capabilities of robot or virtual assistants to the visual

domain [4]. However all of these practical real-life settings are dependent

on the ability of VQA models to be robust and invariant to distributional

shifts and environmental changes, as these applications are not guaranteed

to follow the same constraints and conditions of the data the model was

trained on. Hence it becomes important to not only focus on increasing the

performance of VQA models on standard benchmarks, but to also focus on

improving their ability to generalize well outside the training domain.



CHAPTER II

REVIEW OF RELATED LITERATURE

This section provides a review of related works and relevant topics, includ-

ing previous techniques for robust VQA and an overview of causal represen-

tation learning and its applications to robust VQA.

2.1 Robust VQA

In parallel to the standard VQA task, an active area of research is the train-

ing of specifically robust VQA models. Standard VQA models have been

shown to generalize poorly to new domains as a result of an exploitation of

spurious statistical correlations in the training data [2, 3]. In response, var-

ious methods have been proposed to train models that do not rely on dataset

biases but can instead adapt to new domains and distribution shifts.

These methods usually target specific types of superficial correlations.

To counter the effect of answer priors in the training data (e.g. a model

may learn to answer “tennis” to the question ”What sport is being played?”

regardless of the input image if a majority of the training samples were

answerable by guessing ”tennis”) [2, 3], proposed methods include explicitly

training the model to base its answer on specific regions of the input image

[2, 40], ensemble-based methods [16, 30], and the collection of more diverse

training data to decrease the presence of the answer priors [14]. To address

overfitting to the linguistic formatting of questions (e.g. a model may be able

to answer ”Is it safe to turn left?” but fail when asked the same question in

a novel rephrasing such as ”Can one safely turn left?”) [3, 34], Shah et al.
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[34] propose training with a cycle consistency-based task wherein a model

is trained to generate a question from its inferred answer, which must be

answered to match its original inferred answer. To address brittleness to

semantic variations in visual input (e.g. a model may correctly answer the

question ”What color is the keyboard?” but fail when an irrelevant area of

the mouse is removed), Agarwal et al. [1] increase their training data by

performing image augmentations that affect the answer in a predictable

manner, creating new image-question-answer triples. This last category of

spurious correlations is of particular interest to the present study.

2.2 Causal Representation Learning for VQA

A subset of these techniques fall under the framework of causal representa-

tion learning. Causal representation learning has been proposed as a possi-

ble framework to address poor generalization issues that arise from the use

of statistical models, as well as explain the effectiveness of current meth-

ods for increasing model performance on OOD data. Causal representation

learning focuses on building models that do not rely simply on statistical

observations in training data but mine the underlying causal structure of

the phenomena being modelled [33]. The resulting causal graph, whether

explicit or implicit, can be leveraged to understand novel compositions dur-

ing inference, effectively increasing generalization ability. Techniques to

build causal models include the use of architectural inductive biases that

factorize the inference process through the use of independent mechanisms

[12, 13, 22, 28] as well as meta-learning related training schemes or ob-

jectives [7, 26]. These methods have been shown to increase OOD perfor-

mance. For this reason, causality principles have already been applied to
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robust VQA. Chen et al. [8] train a model to answer counterfactual ques-

tions, a key element of causal learning, by asking the model to answer ques-

tions about edited versions of the same image where regions relevant to

the question are masked. Teney et al. [36] also leverage parallel counter-

factual image-question-answer pairs whose gradients could be used as an

additional training signal.

Causal structures can be learned not just through architectural struc-

tures and training schemes, but also solely through data seen during train-

ing [33]. One well documented method is to simply increase the scope of the

training data to ensure that multiple distributions are seen during training,

reducing the amount of unknown domains the model would have to adapt

to during inference. This is the approach leveraged by large language mod-

els and other foundation models [20, 29] which have shown unprecedented

performance on new domains with little to no fine-tuning data. A second

approach would be to train a model to build rich representations through

a self-supervised learning task, which could be finetuned on downstream

tasks such as VQA. This is usually performed in conjunction with the previ-

ous method, and is the approach behind the most performant VQA models

[5, 35, 39, 41, 42].

A third approach which is commonplace in computer vision would be

to augment the data. This method ties into the causality concept of inter-

ventions. An intervention is defined as an action that changes the joint

distribution of variables in an environment (e.g. moving all cows from fields

to beaches reduces the overlap of images with cows in them and images

with grass in the background) [19]. Applying interventions essentially cre-

ates multiple training environments under different distributional shifts,
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exposing which elements of certain phenomena stay invariant under envi-

ronmental changes. Traditional image augmentations (e.g. image flipping,

saturation editing) have been shown to simulate the act of performing inter-

ventions (e.g. different saturation levels can be considered different training

domains) [18]. Interventions can also be simulated through unshuffling the

train set into different partitions with unique priors, essentially creating

multiple unique training distributions [37].

In the use of interventions for creating robust VQA models, the most

relevant works to this study are the IV-VQA and CV-VQA datasets [1]. The

former leverages pre-existing COCO image and text annotations to deter-

mine which elements of an image should not affect the answer to a given

question, and removes the element using an off-the-shelf GAN-based in-

painter; the latter performs the same procedure but targets relevant enti-

ties in the image and changes the answer to the question accordingly. Train-

ing with these augmented image-question-answer triples exposes models to

distributions outside the standard domain where spurious correlations be-

tween visuals and answers may no longer hold. A similar technique was

leveraged by Gokhale et al. [11], who also augmented questions and used

all augmented image-question-answer triples with a specialized architec-

ture designed to align latent encodings of images and answers.

The study’s proposed technique for generating OOD data points in

terms of the both the general approach as well as breadth of the interven-

tions applied. Firstly, this method does not rely on directly augmenting pre-

existing images, but focuses on simply learning their underlying distribu-

tion and sampling from it with a text-conditioned generative image model,

with interventions being simulated on the marginal distribution of images.
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Secondly, pre-existing works primarily focus on altering targeted regions of

images to break visual correlations. The current work makes no such re-

strictions, other than ensuring the question-answer pairs still apply to the

generated image. Furthermore, these previous studies only target specific

question types (e.g. ”How many”, ”What color”) whereas this work seeks

to overcome this restriction and generate data regardless of the questions

involved.
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METHODOLOGY

Figure 3.1: Proposed method for artificially creating OOD

image-question-answer triples.

The proposed method, shown in Figure 3.1, consists of two stages:

a training stage where the distribution to be considered in-distribution is

modelled, and a sampling stage where the trained model is used to steer

data generation away from the original distribution. In the training stage,

a language model G is first fitted on the distribution of images via their

captions. During the sampling stage, captions are masked, with the scoring

from G used to sampled low-probability replacements to create new cap-

tions. These new captions are then concatenated with the question and an-

swer, with the final prompt used to steer a generative text-to-image model

S.
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3.1 Training stage

Given a distribution of image-question-triples ⟨i, q, a⟩ ∈ D, a naive approach

to generate new data would be to use a q and an a to steer a large pretrained

text-to-image model S to generate a corresponding i. This method however

lacks any form of information about the original distribution D and is not

optimized to maximize the distance of the generated samples from it.

To address this, the study proposes to first partly model D, specifi-

cally I, the marginal distribution of i ∈ D. A model G fitted onto the the

distribution of i can be used as an energy function for how close or far an

image is to to the distribution. This can provide a signal to an optimization

method for sampling with S.

Particularly, the study models the distribution of i as text, due to the

relative computational efficiency of modelling standard text sequences com-

pared to full images, as well as the predominance of generative image mod-

els that are conditioned on text. Each i is associated with a caption c, and a

language model G is fitted onto the distribution of c’s. This study in partic-

ular models the distribution with a bidirectional text encoder via a masked-

language modeling objective.

3.2 Sampling stage

Captions are first sampled from the distribution of c’s. Spacy is used to ran-

domly mask out 70% of nouns and adjectives from a given c. Through G,

replacements can be sampled for these masked tokens. However, to gen-

erate captions away from the original distribution, low-likelihood replace-

ments are identified instead of the traditional approach of sampling the
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Figure 3.2: An example of the study’s proposed sampling method.

most likely tokens. Note that the absolute least likely tokens may lead to

grammatically incorrect captions. To address this, this study selects tokens

t that satisfy argmax
t

{Lt | Ct ≥ 0.7}, where Lt is the logit assigned to t and

Ct =
∑

Li∈{Li|Li<Lt} Li. This identifies the least likely token replacement fol-

lowing the restriction that its likelihood falls within the top 70% of the total

probability mass. This balance encourages generations to be both away from

the original distribution but sensible enough to be valid image captions. An

illustration of this sampling method is show in Figure 3.2.

The generated image captions t′ are then concatenated with the ques-

tions and the answers creating image prompts of the form "{q} {a}. {t’}"

which are then passed to S.



CHAPTER IV

EXPERIMENTS

Figure 4.1: Overview of overall experimental set-up.

Figure 4.1 shows the overall set-up for data generation, fine-tuning,

and evaluation. As discussed in Section 3, a finetuned language model G

along with text-to-image model S are used to generate OOD image-question-

answer triples. This data is then used to finetune a pretrained VQA model

B′, whose performance is compared to its baseline non-finetuned counter-

part B for potential robustness gains. Specific models used for G, S, and

B/B′ are discussed in Section 4.1. The evaluation protocol is discussed fur-

ther in Section 4.3. A simpler illustration showing the exact components

used in the study are shown in Figure 4.2. Off-the-shelf models and datasets
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Figure 4.2: Main components of study.

are shown in green. The study’s contributions in terms of proposed pipeline

and artifacts such as resulting finetuned models and synthetic data are

shown outlined in dashed red.

4.1 Experimental details

4.1.1 Base distribution

All experiments use VQA v2.0 [14] as the base distribution. VQA v2.0

sources real images from MS COCO [24], itself a collection of photos con-

taining common everyday objects in common contexts scraped from Flickr,

as well as synthetic images using clip art. Each photo is then given multiple

relevant questions and answers through human annotation. With 265016

images and at least three questions per image, the final dataset contains

4437570 datapoints for training and 2143540 datapoints for validation.



15

4.1.2 Text modelling

For G, text modelling of these captions is performed by finetuning a Dis-

tilRoBERTa [32], a Transformer-based text encoder. Text is passed as a

sequence of tokens, with each token mapped to a learned vector from a vo-

cabulary. Each vector is then updated as a weighted sum of the other vec-

tors in the sequence. DistilRoBERTa is a shrunken version on RoBERTa

[25], which is trained with a masked language modelling objective, where

a subset of tokens in a sentence are obscured and must be recovered using

the remaining tokens as context. As such, given a sentence with a masked

word, DistilRoBERTa is able to provide an unbounded score for each word

in the vocabulary with higher values indicating a higher likelihood that the

word is a proper substitute for the masked word.

The DistilRoBERTa used in this study is finetuned at 16-bit precision

on 10000 image captions for 3 epochs with batch size 64, learning rate 8e-5,

warmup ratio 0.6, weight decay 0.01, and AdamW optimization with β1 =

0.9, β2 = 0.999, and ϵ = 1e-8.

4.1.3 Image generation

Image generation is performed with a DeepFloyd-M as S, an open imple-

mentation of Imagen [31]. DeepFloyd leverages diffusion models to gen-

erate images, where an initial image of noise is iteratively denoised with

the goal of producing an image that matches a provided text description.

Specifically, DeepFloyd is a cascade of diffusion models, where one diffusion

model is used to generate a 64 × 64 image, a second diffusion model is con-

ditioned off the previous image to produce a 256 × 256 images, and a third
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diffusion model is conditioned off the previous image to produce a 1024 ×

1024 image. For computational efficiency, image generation in this study

is performed using only the first diffusion model at 16-bit precision for 27

denoising steps, with the text encoder used in 8-bit precision.

To generate the study’s OOD images, 20000 captions are first gen-

erated with the method described in Section 3.2. These captions are then

filtered down to 5664 captions through a simple filtering heuristic with mul-

timodal encoder CLIP [29], where each image and text are projected to an

n-dimensional semantic vector space where similar vector imply similar se-

mantics (e.g. the encoded vector for ”A photo of a cat.” would be closer to that

of an image of a cat than an image of a dog). The vector difference between

the generated caption embedding and the the embedding of the concatena-

tion of the question-answer pair are added to the original image embedding,

with the resulting embedding compared with original image embedding via

cosine similarity; captions that fail to produce a score of at least 0.2 are

ignored, as these captions may contradict the question-answer pair. 3624

of these captions are used for training, with the rest reserved as validation

and test splits for potential future studies.

4.2 Data Description

Examples of data generated with this method can be seen in Figure 4.3.

This study performs a brief exploratory analysis on the distribution

generated by the proposed method.

Figure 4.4 shows the top 25 words by relative usage, where in-distribution

corresponds to the training captions and out-of-distribution corresponds to

the generated data. For this particular experiment, a word is an item in Dis-
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Figure 4.3: Sample generations with study’s proposed method.

tilRoBERTa’s vocabulary after lowercasing and whitespace removal. Stop-

words as provided by Spacy and punctuation marks are also excluded from

this analysis. While there exists overlap between the top 25 words of the

original and generated captions, with 20 words existing in the top 25 of both

distributions, a stronger gap between in-distribution and out-of-distribution

data is revealed through an analysis of the generated images.

Datapoints with identical question-answer pairs are identified and

encoded via the same CLIP described in Section 4.1.3. After reducing to

8 dimensions via PCA for numerical stability, the Mahalanobis distance of

datapoints in these sample question-answer clusters compared to the mean

of the in-distribution datapoints are seen in Table 4.1. For these sample

question-answer categories, the average image generation is empirically

shown to lie away from its in-distribution counterparts in semantic space.

For a visual representation of this distance, the vectors can instead be re-
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(a) VQA v2.0 (in-distribution) (b) generated data (out-of-distribution)

Figure 4.4: Top 25 words by frequency.

duced to two-dimensional space via PCA and plotted, as shown in in Figure

4.5. Blue points represent the original distribution while orange points rep-

resent the study’s generated data.

Lastly, the generated data is evaluated for potential factual incorrect-

ness. Text-based image generation is still prone to producing images incon-

sistent with the provided prompt. The CLIP embeddings of the generated

images are compared with the CLIP embeddings of the concatenation of

their corresponding question and answer, similar to the filtering step dis-

cussed in Section 4.1.3. On average, the cosine similarity of an image gen-

erated with the study’s method with its question and answer is 0.18, below

the minimum 0.2 or 0.3 threshold that most studies consider as an indi-

cator of data cleanliness. Despite this relatively low cosine similarity, the

results in Section 4.4 empirically show the potential for the study’s method

is concretely improve OOD generalization in the VQA task setting.
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Figure 4.5: PCA-reduced plots of datapoints in CLIP space.

4.3 Evaluation Protocol

To evaluate robustness against OOD images, this study adopts the evalua-

tion protocol proposed by Agrawal et al. [3]. This study first evaluates the

performance of a VQA model, B, on the test set of its training distribution,

followed by the test sets of separate distributions to observe the drop in

accuracy resulting from the distribution shift. With these results as a base-

line, the model is then finetuned on the study’s generated data to create B′,

which is evaluated on the same out-of-distribution validation or test sets.

Higher accuracy implies increased robustness while converse implies wors-

ened robustness. Accuracy is measured with the protocols corresponding to

the respective benchmark. Specific implementation details are as follows.
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4.3.1 Model and finetuning

For B and subsequently B′, this study selects BLIP [23] as the model. BLIP

is a multimodal mixture of encoder-decoders (MED) comprised of an image

encoder, text encoder, and text decoder, all of which are Transformer-based.

The model is pretrained on a large corpus of web-scraped images-with-

caption pairs optimized with three loss functions/objectives: 1) a contrastive

loss between matching/mis-matching image-text pairs where the encoders

act independently without cross-attention; 2) a binary classification task to

identify matching image-text pairs where the text encoder interacts with

the vision encoder via cross-attention (image-grounded text encoding); and

3) a causal language modelling task to generate captions given an image

where the text decoder interacts with the vision encoder via cross-attention

(image-grounded text decoding). The pretraining data is augmented and fil-

tered via a bootstrapping method, where an identically configured MED is

trained with the same objectives but on a human annotated image-text pair

dataset, which is then used to adjust the pretraining corpus by adding new

captions to the images as well as filter out noisy image-text pairs.

To use BLIP for VQA, the image is first encoded with the image en-

coder, then the question is encoded by the text-encoder in an image-grounded

manner, and finally the answer is generated by the text-decoder via cross-

attention with the encoding of the question. A model card [27] for the study’s

finetuned model can be found in Appendix A.
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4.3.2 Evaluation data

Two datasets are used for the robustness evaluation protocol: 1) the Art

QUestion Answering (AQUA) [9] dataset, and 2) VizWiz dataset [15].

AQUA is comprised of image-question-answer triples where the im-

ages are fine-art paintings. With respect to VQA v2.0, AQUA represents a

distribution shift by focusing primarily on artistic renderings and paintings

rather than photos of the real world. The study focuses on the subset of

image-question-answer triples that can be answered without historical con-

text and art knowledge. These are generated using two methods: 1) the use

of an object detector to identify objects in the images, which are passed to a

model which generates a question conditioned on an image and an answer,

in this case an identified object; and 2) the generation of an image caption

using off-the-shelf tools which is then converted into a question and an-

swer pair using rules-based methods. The resulting image-question-answer

triples are filtered by grammatical and factual correctness using Amazon

Mechanical Turk (AMT) workers. This study evaluates on the test split of

this subset, amounting to 1270 datapoints. Examples from this dataset are

shown in Figure B.1.

VizWiz is comprised of photos taken by the visually impaired, with

each photo accompanied with a question asked by the photo’s originator as

well as corresponding answers. With respect to VQA v2.0, VizWiz repre-

sents a distribution shift in image quality with lighting, camera focus, and

framing differing from the conditions normally found in photos taken by the

visually unimpaired. Image-question pairs are sourced from visually im-

paired participants, with manual filtering performed by AMT workers and
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a specialized committee to remove data violating individuals’ privacy. AMT

workers are also used to provide answers to the image-question pairs. As

answers are not available for the test set are not publicly available, this

study utilizes the validation set for evaluation, specifically the subset of

data where the questions are indicated by annotators to be properly answer-

able, resulting in 2934 datapoints. Examples from this dataset are shown

in Figure B.2.

4.4 Results

Table 4.2 shows the performance gains produced by finetuning on the study’s

synthetic OOD data. The performance of BLIP on VQA v2.0, the original

distribution used for training, is 77.54%. In concurrence with prior results

[3], because AQUA, and VizWiz carry underlying distribution shifts, BLIP

does not maintain this same level of performance across these benchmarks

despite all being VQA tasks, dropping in accuracy to 27.72% and 19.54% on

AQUA and VizWiz respectively.

With finetuning on less than 4000 synthetically generated datapoints

and relying only on large pretrained models and the base distribution, these

performance drops across distributions shifts are reduced. After finetuning,

accuracy is raised to 31.50% for AQUA, and to 20.37% for VizWiz. This

entails accuracy drop reductions of 7.59% and 1.43% respectively. While the

performance gap is not completely closed, the presence of positive accuracy

drop reduction shows the potential for using large pretrained models for

synthetic OOD data generation for training purposes.
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Table 4.1: Mahalanobis distance of sample generations from in-distribution

counterparts.

Mahalanobis distance ↑

question-answer

pair

in-distribution image out-of-distribution image

Q: What sport is

being played?

A: baseball 2.55 30.53

Q: What room is

this?

A: kitchen 2.77 23.26

Q: What color is

the bus?

A: red 2.73 26.66

Q: Are these

animals in the

wild?

A: no 2.57 27.66

Table 4.2: Accuracy across different test sets.

AQUA VizWiz

baseline 27.72% 19.54%

finetuned 31.50% 20.37%



CHAPTER V

CONCLUSION

This study shows pilot work for utilizing pretrained foundation models to

synthetically intervene on a VQA data distribution. It proposes a novel

sampling method to extract low probability token replacements from image

captions via a masked language model. By leveraging a pretrained text-to-

image model, these generated captions can then be used to synthesize new

datapoints to finetune a pretrained VQA model. Finetuning with this gen-

erated data is empirically shown to improve robustness in VQA accuracy

across multiple investigated distribution shifts, with accuracy drop reduc-

tions of 7.59% on art-based distribution shift dataset AQUA and 1.43% on

visual impairment-based distribution shift dataset VizWiz. This demon-

strates the potential for improving model robustness through foundation

models without additional data collection.

Several future directions exist for this work. Firstly, future studies

can examine the effect of experimenting with larger but more computation-

ally expensive generative models on the quality of generated outputs. Sec-

ondly, studies can investigate an alternative approach to simulating inter-

ventions by leveraging an image-to-image translation method to intervene

on individual datapoints. Lastly, future studies can experiment with gen-

erative text modelling as opposed to masked language modeling to under-

stand whether data quality can be improved if generation were not reliant

on a single uniform threshold.
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APPENDIX A

MODEL CARD

Table A.1 shows the model card for the finetuned VQA model produced by
this study. Because it is a finetuned version of the original BLIP model,
most details in this model card are focused on information relevant to the
particular finetuned version.

Table A.1: Finetuned BLIP Model Card.

Model Details

Organization de-

veloping model

Salesforce (base model); ALIVE (finetuning)

Model date July 27, 2023 (finetuning)

Model version v1

License BSD 3-Clause

Intended Use

Primary intended

use

visual question answering (VQA) research, robust

VQA

Primary intended

users

researchers in computer vision, natural language

processing, foundation modals, multimodal learn-

ing

Out-of-scope use

cases

Deployment in practical applications outside re-

search settings

Metrics

Model perfor-

mance measures

accuracy on out-of-distribution VQA datasets fol-

lowing said datasets’ prescribed evaluation proto-

cols
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Decision thresh-

olds

Not applicable

Approaches to

uncertainty and

variability

To conserve computational and energy costs, only

one finetuned model was produced.

Evaluation Data

Datasets AQUA [9]; VizWiz [15]; VQA v2.0 [14]

Motivation Following Agrawal et al. [3], we also use evaluation

splits from datasets other than the original train-

ing dataset in order to probe robustness to distri-

bution shifts.

Preprocessing None

Training Data

Datasets Synthetically generated OOD VQA data described

in Section 3

Motivation We finetune on synthetically generated OOD data

in order to examine the possible improvements in

robustness across distribution shifts.

Preprocessing 0.20 CLIP-filtering used in training data construc-

tion as described in Section 4.1

Ethical Considerations

Data This model has been trained on data generated

with diffusion model-based methods, which have

been shown to be capable of memorizing exact in-

stances of training data.
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Human life This model is not intended to infer anything about

humans other than what can be understood visu-

ally (e.g. ”Is this person smiling?”, ”What is the

person holding?”).

Risks & harms As this model has not been evaluated for bias, toxi-

city, etc., this model could potentially pose a risk if

deployed if its outputs were to be used in decision-

making scenarios regarding people.

Use cases This model is intended for research purposes only.

It has not been evaluated for toxicity, bias, etc. and

should not be deployed outside of a research set-

ting.

Caveats and Recommendations

This model has not been evaluated for bias, toxicity, etc. and is recom-

mended to strictly be used only within a research setting unless further

analysis on safety has been conducted.



APPENDIX B

EVALUATION DATA

Because each VizWiz question is annotated with ten answers, Figure B.2
shows only the most common answer for demonstration purposes.

Figure B.1: Examples of data from AQUA used in this study.

Figure B.2: Examples of data from VizWiz used in this study.



APPENDIX C

SAMPLE EVALUATIONS

Figure C.1 shows example VQA datapoints where answers differ between
the finetuned and baseline models.

Figure C.1: Sample inference with baseline and finetuned models.
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