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ABSTRACT

Despite CLIP’s performance on vision-language tasks, CLIP’s size lim-

its its deployment in low resource environments. We propose a knowledge

distillation scheme to compress a teacher CLIP into a smaller student model

we term DistillCLIP. Our framework consists of distilling both intra-modal

and inter-modal similarity maps between and within image and text embed-

dings. DistillCLIP is 43.69% the size of CLIP and has 82.43% its FLOPs.

We show that the ability of DistillCLIP to retain teacher performance on

zero-shot transfer tasks may depend on the semantic granularity of class

labels, preserving only 63.81% of teacher accuracy on average. Meanwhile

DistillCLIP’s linear probe performance matches and on some datasets sur-

passes that of the teacher CLIP with an average retention rate of 100.53%.

However, DistillCLIP retains only 12.28% teacher accuracy on average on

distribution shift datasets. We also demonstrate that DistillCLIP is able to

preserve 99.34% teacher accuracy on video accident recognition in dashcam

videos.
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CHAPTER I

INTRODUCTION

Vision-language pretrained models encode images and text to a shared se-

mantic space. These models can then be fine-tuned on various downstream

vision-language tasks such as visual question answering [3], visual entail-

ment [54], and text-to-image retrieval. These tasks require models to under-

stand both visual and linguistic information. For example, in text-to-image

retrieval, a model must extract the linguistic content of the text query and

the visual content of each candidate image to identify the image best de-

scribed by the query.

Popularized by CLIP [38], recent success in vision-language pretrain-

ing has been achieved by multi-encoder models that employ or incorporate

a contrastive learning objective [24, 37, 46, 55]. Motivated by language-

supervised image representation learning, CLIP exhibits zero-shot transfer

performance on computer vision benchmarks competitive with fully super-

vised task-specific baselines. Although originally evaluated on computer

vision tasks, CLIP is a vision-language model by design, and has seen fur-

ther applications in visual question answering [45], visual entailment [45],

text-guided object detection [56], text-guided image segmentation [52], and

text-to-image synthesis [10, 34, 39, 40].

1.1 Statement of the Problem

Despite state-of-the-art performance across a variety of vision-language tasks,

the computational requirements of CLIP make it difficult to deploy in re-



2

source constrained environments such as edge devices. The more perfor-

mant CLIP models use a ViT [14] as an image encoder and a Transformer

[48] model structurally similar to BERT [13] as a text encoder. These en-

coders have individually already been reported to be computationally ex-

pensive for low-resource devices [18, 25, 27, 30, 43, 57]. CLIP becomes even

more expensive compared to these individual encoders as it uses both of

them in its dual-encoder architecture, motivating the need for compress-

ing models into smaller and faster versions that still perform close to their

uncompressed ones.

Various methods exist to compress models, such as pruning [21] and

quantization [17]. Of particular interest to this paper is knowledge dis-

tillation [23], which trains a smaller student model to match the outputs

of a larger teacher model. While knowledge distillation has been applied

to BERT [26, 43] and ViT [25], knowledge distillation for CLIP is still an

emerging field [42, 49].

1.2 Research Objectives

Knowledge distillation is non-trivial, as there is no fixed framework for per-

forming distillation. There exist multiple supervisory signals from teacher

models, and the choice of these signals and how these signals are used may

affect the student’s performance. Therefore, we plan to design a knowledge

distillation scheme for CLIP.

We will then evaluate the performance of DistillCLIP on tasks CLIP

was originally evaluated on, along with a practical use case of CLIP’s ex-

pressive encoders. Because the student is expected to reproduce the behav-

ior of the teacher to a certain extent, it is intuitive to evaluate the distilled
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CLIP on the same benchmarks used for the teacher CLIP, which include

zero-shot transfer, linear probe evaluation, and robustness to natural dis-

tribution shift. Additionally, we evaluate DistillCLIP on traffic accident

recognition [6], a practical application of CLIP.

Lastly, we aim to compare the performance, parameter count, and

inference speed of DistillCLIP to the teacher CLIP. Given that the purpose

of knowledge distillation is to have a student that is smaller and faster than

its teacher but still competitive in performance, it is important to evaluate

the performance, size, and speed of the student with respect to the teacher.

1.3 Research Questions

1. What supervisory signals can be used to distill CLIP into a smaller

model?

2. How does the distilled CLIP perform on tasks CLIP was evaluated on?

(a) How does the distilled CLIP perform on zero-shot transfer?

(b) How does the distilled CLIP perform on linear probe evaluation?

(c) How robust is the distilled CLIP to natural distribution shift?

3. How does the distilled CLIP perform on traffic accident recognition?

4. How does the performance, parameter count, and FLOPS of the dis-

tilled CLIP compare to those of CLIP?

1.4 Scope and Limitations

Our training and evaluation experiments will mostly be constrained by com-

putational and storage limitations. Although CLIP was pretrained on a
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large-scale dataset of 400 million image-text pairs, we will train on a much

smaller dataset as a result of storage constraints. Furthermore, while CLIP

was evaluated on over 30 computer vision benchmarks, we will only evalu-

ate the distilled CLIP on a smaller set of tasks due to computational limita-

tions. However, we will expand the scope of tasks of the original CLIP paper

by also evaluating on traffic accident recognition.

1.5 Significance of the Study

The significance of a knowledge-distilled CLIP comes from 1) the value of

CLIP itself, and 2) the value of a small, fast, but performant CLIP.

While many vision-language models are task-specific in the sense that

they are explicitly trained to perform only one type of task (ex. image cap-

tioning, visual question answering), CLIP can be considered a more general

pretrained model that can be applied to different vision-language use cases.

CLIP is one of several models in recent years [5, 13] termed “foundation

models” [4], which demonstrate the ability of models pretrained on large

amounts of data to be fine-tuned on several downstream tasks.

Because CLIP in particular can jointly encode both visual and lin-

guistic information, it can be applied to a plethora of tasks which require

understanding such information. For example, CLIP can be a component

for visual question answering for low vision users [19], image captioning

models for those with low vision [20], or interactive technologies that de-

scribe or answer students’ questions about images [1]. The practical use

case we evaluate on, accident recognition, is especially useful for driving

environments as it can be used in advanced driver-assistance systems and

autonomous driving scenarios.
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However, many of these applications work best when they are de-

ployed on embedded or edge devices, such as a mobile phone or an on-vehicle

device attached to a dashcam. Because CLIP is considered computationally

expensive, it might not perform well on such devices. Therefore, end-users

would benefit from a smaller and faster version of CLIP whose performance

is still acceptable for their use case.



CHAPTER II

REVIEW OF RELATED LITERATURE

Knowledge distillation is a model compression method where a model is

made a teacher whose behavior a smaller student model is trained to repro-

duce. The intuition behind knowledge distillation is that the outputs of a

trained model often contain more information than the supervisory signals

it was originally trained with. For example, while the output probability

distribution for a vision encoder that correctly identifies a cat gives a much

higher probability to the cat class than any other class, it might still give

higher probabilities to other animal classes compared to non-animal classes.

These minute differences offer a much richer training signal than the orig-

inal one-hot vector indicating the ground truth label. Training a student to

not only match the ground truth labels but also the output distributions of

a teacher model can help it learn better than relying solely on the ground

truth labels.

The standard knowledge distillation setup exists in a classification

setting, and trains the student model with a linear combination of a cross

entropy loss with ground truth labels and a cross entropy loss with “soft”

labels from the teacher’s output probability distributions. Subsequent work

into knowledge distillation revolve around proposing novel “novel distil-

lation schemes”, which typically involve identifying other outputs of the

teacher model that can be used as supervision signals for the student.

Precursory work can be found in knowledge distillation of the Trans-

former encoders that comprise CLIP1 are still of relevance. Prior works have
1CLIP was also proposed with ResNet-50 vision encoder configurations, but in this work



7

distilled these encoders using a variety of learning signals from the teacher,

such as hidden states [26, 43], attention matrices [26, 50], and token-level

manifolds [25] with cosine, MSE, and Kullback-Leibler divergence losses.

Of prior work on CLIP knowledge distillation, few focus on compress-

ing CLIP but rather on transferring knowledge between CLIP and non-

CLIP models. Prior studies have distilled unimodal encoders to the individ-

ual CLIP encoders [51], from architecturally different multimodal models to

CLIP [53], or from individual CLIP encoders to unimodal generative models

[11].

Furthermore, several studies that do distill between CLIP architec-

tures are not motivated by model compression. Some studies in CLIP dis-

tillation focus specifically on self-distillation [2, 8], a variant of knowledge

distillation where the teacher is based on the student, to improve data ef-

ficiency. This is not used for model compression as the teacher and the

student are of the same size.

Of existing work into knowledge distillation for CLIP model compres-

sion, MoTIS [42] and ConaCLIP [49], the latter of which is concurrent to our

study, are the most similar to our work. Both perform distillation through a

two-stage pre-training-and-fine-tuning framework. MoTIS first individually

compresses the image and text encoders with an intra-modal contrastive

objective, then performs task-specific fine-tuning by distilling within and

across modalities using contrastive and Kullback-Leibler divergence losses,

respectively. ConcaCLIP follows a fully-connected “knowledge interaction

graph” and distills each student from itself, its teacher, and both the student

and teacher of the opposite modality using contrastive, squared l2 norm, and

we focus only on CLIP using Transformer encoders for both images and text.
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Kullback-Leibler divergence losses.

Our study differs from these studies however as our method is sim-

pler; our proposed knowledge distillation scheme is only a one-stage frame-

work and with only one type of loss for distilling intra and inter-modal

knowledge. Furthermore, while they evaluate their model primarily on

image-text retrieval, our evaluations focus on natural language supervised

image classification.



CHAPTER III

METHODOLOGY

After an overview of preliminary concepts surrounding CLIP, we discuss our

approach to distilling CLIP into DistillCLIP, evaluating DistillCLIP, and

comparing DistillCLIP to CLIP.

3.1 Preliminaries: CLIP

CLIP (Contrastive Language-Image Pre-training) [38] is a vision-language

model pretrained with a contrastive loss. It is trained to jointly embed im-

ages and texts such that images and texts with similar semantic content

have similar vector representations. Opposed to other multimodal fusion-

encoder architectures which encode both visual and linguistic information

with a shared encoder, CLIP follows a dual-encoder architecture and sepa-

rately encodes texts and images with individual modality-specific encoders.

Given a batch of image-text pairs where the each text describes its cor-

responding image, CLIP independently embeds the images and texts with

an image encoder and a text encoder, respectively. The hidden image and

text representations are then linearly projected to a contrastive multimodal

embedding space. CLIP is trained with an InfoNCE loss [35] on the cosine

similarities of the image and text embeddings. This trains the model to

align the embeddings of images and texts belonging to the same pair and

contrast the embeddings of images and texts belonging to different pairs.

In practice, the image and text embedders are Transformer encoders.

Images are tensors of shape channel × height × width which are reshaped
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into a list of patches each of shape patch height×patch width. These patches

are then embedded into dv-dimensional vectors, and the list of patch embed-

dings is prepended with a [CLS] token of the same dimensionality. After

processing all tokens with the vision Transformer encoder, the [CLS] is

projected into d dimensions. Meanwhile, texts are tokenized into sequences

of token IDs, and each token is projected into dt-dimensional vectors with

each sequence prepended with its own dt-dimensional [CLS] token. Sim-

ilar to the images, the whole sequence of embeddings is processed by the

text Transformer and the [CLS] token is projected one last time to d dimen-

sions. These [CLS] tokens serve as each data point’s image and text vector

representations.

Processing a batch of image-texts pairs, where each text describes

its corresponding image, produces a batch of image and text representa-

tions zv, zt ∈ Rb×d, where zvi and zti correspond to the same data point and b

refers to the batch size. Afterwards, an inter-modal similarity map Sinter ∈

[−1, 1]b×b is produced, where Si,j refers to the similarity of image i and text j.

This is computed by taking the dot product z̃vz̃t⊺, where x̃ refers to the row-

wise l2-normalized x. This essentially computes a cosine similarity map be-

tween the image and text vectors and represents each similarity as a scalar

in [−1, 1]. InfoNCE loss is then used to maximize the diagonal of S and min-

imize the off-diagonal of S, training CLIP to only produce similar vectors for

images and texts that are semantically similar.

3.2 CLIP Knowledge Distillation

Figure 3.1 provides an overview of the proposed CLIP distillation approach.

In this particular figure, assume all model outputs are already l2-normalized.
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Figure 3.1: Overview of the CLIP knowledge distillation scheme.

We distill a teacher CLIP T with image and text Transformer encoders T v

and T l of embedding sizes dT into a student CLIP S with image and text

Transformer encoders Sv and Sl with embedding sizes dS < dT . The teacher

image and text encoders produce outputs zvT and ztT while the student image

and text encoders produce representations zvS and ztS.

3.2.1 Similarity Map Distillation

The main intuition behind our knowledge distillation scheme lies in the

similarity map Sinter ∈ [−1, 1]b×b produced by CLIP. These similarity scores

can be interpreted as logits representing the probability that image i and

text j match, or share the semantic content. As such, the similarity map
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contains useful information about how to embed inputs. Therefore, we use

the logits of these inter-modal image-text similarity maps as supervisory

signals for distillation. As discussed in Section 3.2.1.2, we also use the logits

of intra-modal image-image and text-text similarity maps.

3.2.1.1 Inter-modal Similarity Map Distillation

We align the logits of the image-text similarity map of the student encoders

with those of the teacher encoders with a squared l2-norm loss Linter:

Linter = ∥z̃vT z̃
t⊺
T − z̃vS z̃

t⊺
S ∥22 (3.1)

3.2.1.2 Intra-modal Similarity Map Distribution

We observe that it is not only possible to compute inter-modal (i.e. image-

text) similarity maps with CLIP but also intra-modal ones (i.e. image-

image, text-text) too. While CLIP was not originally trained with intra-

modal similarity maps, derivative works [16, 33] have employed them to

improve CLIP performance. Additionally, intra-modal similarity maps have

been used in unimodal contrasive learning for images [7] and text [15].

For embeddings zm of modality m ∈ v, t, the intra-modal similar-

ity map can be produced by computing the cosine similarity map Sm
intra =

z̃mT z̃m⊺
T ∈ Rb×b. Each value in Sm

intra represents a probability that image/text i

matches image/text j. We align image-image and text-text similarity maps

using a squared l2-norm loss Lintra:

Lintra = ∥z̃vT z̃
v⊺
T − z̃vS z̃

v⊺
S ∥22 + ∥z̃tT z̃

t⊺
T − z̃tS z̃

t⊺
S ∥22 (3.2)
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3.2.2 Training Objective

The final loss is a weighted sum of the inter and intra-modal losses:

L = λinterLinter + λintraLintra, (3.3)

where λr and λs are the weights of the relative representation loss and the

image-text similarity loss, respectively.

3.2.3 Training

We use a CLIP-ViT-B/32 as our teacher model. Following MoTIS and Cona-

CLIP, for our student model we create a CLIP with a ViT-S/16 image en-

coder, a 6-layer text Transformer encoder with the same dimensionality as

the teacher text encoder, and dS = 256. We call this student DistillCLIP.

The image encoder is initialized with pretrained ImageNet-21k weights [47]

while each layer i in the text encoder is initialized witht he weights of layer

2i of the teacher text encoder. We train the student using our CLIP distil-

lation scheme on Conceptual Captions 3M [44] for 33,513 steps, or approx-

imately one epoch, using AdamW [31] with a learning rate of 3e-5, β1=0.9,

β2=0.98, ϵ=1e−6, weight decay of 1e−1, cosine learning rate decay, 10,000

warm-up steps, and a batch size of 84. These hyperparameters are modified

from the MoTIS training protocol. We set λinter=λintra=1. Additionally, al-

though Conceptual Captions 3M was originally created with 3M data points,

preparing the dataset requires downloading all images from scratch, how-

ever due to data unavailability after the publication of Conceptual Captions

3M, we were only able to prepare 2.8M image-text pairs.
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Figure 3.2: Overview of datasets and tasks.

3.3 Evaluation

After training DistillCLIP, we evaluate the model on a series of benchmarks.

We evaluate on three tasks CLIP was originally tested on (zero-shot trans-

fer, linear probe evaluation, and robustness to natural distribution shift),

and on, accident recognition in videos. Note that in each evaluation, the

goal is not to maximize student performance but to maximize the retention

of teacher performance, or the capacity of the student to match teacher per-

formance. As all evaluation tasks are measured with accuracy, we define

the retention rate as the student accuracy divided by the teacher accuracy.
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3.3.1 Datasets

We present the datasets used in each evaluation in Figure 3.2. We describe

each dataset in detail below.

CIFAR-10 Canadian Institute For Advanced Research 10 [28] is an image

classification dataset of 60,000 32×32 pixel RGB images split across 10 se-

mantically distinct classes i.e. cat, truck, ship. Each class contains 6,000

images, with 5,000 for training and 1,000 for testing.

CIFAR-100 Canadian Institute For Advanced Research 100 [28] is an im-

age classification dataset of 60,000 32×32 pixel RGB images split across 100

semantically distinct classes i.e. apple, lion, keyboard. Each class contains

600 images, with 500 for training and 100 for testing.

STL-10 Self-Taught Learning 10 [9] is a dataset for self-supervised rep-

resentation learning for image classification. The dataset consists of 10 se-

mantically distinct classes i.e. bird, car, truck. Each class consists of 500

training images and 800 testing images. Although STL-10 contains 100,000

unlabelled images, we ignore these and only use the train and test splits.

Each image is 96×96 pixels with RGB channels.

Oxford-IIIT Pet Oxford-IIIT Pet is an image classification dataset of 37

classes of cat and dog breeds. The dataset comes with species (cat and dog)

annotations, which we use as “coarse labels” to create a binary classification

version of the dataset. Evaluations are performed with both the fine-grained

37-class dataset and the coarse-grained 2-class dataset.
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ImageNetV2 ImageNetV2 [41] is an alternative ImageNet test set of 10,000

images created after the creation of the original ImageNet [12]. It contains

examples which are more difficult for ImageNet-trained models to general-

ize to.

ImageNet-A ImageNet-A [22] is an ImageNet test set containing natural

adversarial examples that image classifiers tend to misclassify. It consists

of 7,500 images across a 200-class subset of ImageNet classes.

Aadv Aadv [6] is originally a video accident anticipation dataset, where

the task is to predict whether an accident will occur in succeeding frames.

However, we convert this into a binary classification video accident recogni-

tion dataset, where the task is to predict whether or not a video contains an

accident. Each video is 100 frames, with each frame being a 1280×720 RGB

image. If a video contains an accident, it occurs in the last 10 frames of the

video.

3.3.2 Zero-Shot Transfer

Radford et al. [38] propose zero-shot transfer as a benchmark to evaluate

CLIP’s task-learning capabilities, or the ability to generalize to unseen tasks

or datasets. These tasks are usually image classification tasks. To use Dis-

tillCLIP for zero-shot transfer on a image classification dataset, we first

perform prompt engineering and ensembling to create text prompts for the

classes. For each label, we create multiple prompts e.g. “A photo of a

{label}.”, “A blurry photo of a {label}.”, etc.1 We then encode the
1We use the prompts used by Radford et al. [38] provided in https://github.com/o

penai/CLIP/tree/main.

https://github.com/openai/CLIP/tree/main
https://github.com/openai/CLIP/tree/main
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prompts and the images with the text and image encoders of DistillCLIP,

respectively. Each class is an ensemble of prompts represented as the l2-

normalized average of its corresponding text prompt embeddings, which are

also l2-normalized. The prompt ensemble with which an image has the high-

est cosine similarity is taken as the model’s prediction of the image’s label.

While Radford et al. [38] perform zero-shot transfer on 27 tasks, we focus

on the following datasets: CIFAR10 [28], CIFAR100 [28], STL-10 [9], and

Oxford-IIIT Pet [36]. We center crop each image to 224×224.

3.3.3 Linear Probe Evaluation

Linear probe evaluation measures the representation learning capabilities

of the model. We conduct linear probe evaluation by freezing the model,

attaching a single trainable linear layer on top of it, and fine-tuning on a

target image classification dataset. Although CLIP’s linear probe evaluation

was conducted on 12 datasets, we focus on the same datasets from the zero-

shot transfer experiments for DistillCLIP, with the same cropping method.

3.3.4 Robustness to Natural Distribution Shift

While robustness to natural distribution shift typically refers to a model’s

ability to generalize to data that does not fit its training distribution, distri-

bution shift robustness in terms of CLIP evaluation refers to generalization

to data that does not fit the ImageNet training distribution. Neither CLIP

nor DistillCLIP were trained on ImageNet, however standard practice is to

train and evaluate models trained on ImageNet, hence it is of particular

interest to image classifiers to exhibit robustness to ImageNet distribution

shifts. We measure DistillCLIP’s robustness to these shifts by performing
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zero-shot transfer on ImageNetV2 [41] and ImageNet-A [22].

3.3.5 Video Accident Recognition

We extend the existing CLIP evaluations to video accident recognition, a

more practical benchmark. In this task, given a video we are tasked to

determine whether an accident has occurred or not.

To extend CLIP and DistillCLIP to videos, we use EVL [29], a video

classification architecture using a frozen pretrained CLIP backbone. Given

a video, EVL first extracts multi-level spatiotemporal features by embed-

ding each frame with a frozen CLIP backbone and taking the stacked frame

embeddings at different layers of the backbone. EVL then aggregates in-

formation from these features using a Transformer decoder with a learn-

able [CLS] token. To incorporate temporal information into the spatial

features extracted with CLIP, EVL employs local temporal modules com-

posed of depthwise convolutions along the temporal dimension, temporal

positional embeddings, and cross-attention between frames. We choose EVL

for this task as it does not fine-tune the CLIP backbone, thereby isolating

and measuring the repesentative power of CLIP, akin to linear probe evalu-

ation.

We adopt a video accident anticipation dataset Aadv [6] for this task.

As each video is 100 frames, we sample every 14th frame starting with the

0th frame to create 10-frame videos. Instead of center cropping, we shrink

and pad each video frame to 224×224 so that no accident-related informa-

tion is cut off.

We train EVL using AdamW with learning rate 4e−4, weight decay

5e−2, cosine learning rate decay, batch size 8, and 16 gradient accumulation
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steps.

3.4 Comparison to CLIP

We investigate the performance/size/speed trade-off between DistillCLIP

and CLIP. Specifically, we compare the two models in terms of performance

on the tasks outlined in Section 3.3, parameter count, and FLOPS.



CHAPTER IV

RESULTS

4.1 Zero-Shot Transfer

Results for zero-shot transfer experiments are presented in Table 4.1. The

zero-shot ability of DistillCLIP is variable, ranging from as low as 3.38% ac-

curacy on Oxford-IIIT Pet (3.88% retention of teacher performance) to up to

97.83% accuracy on Oxford-IIIT Pet with coarse labels (97.83% retention).

We observe that DistillCLIP’s zero-shot performance is dependent on the

complexity of the dataset. Upon initial inspection it appears that the ability

to match teacher performance degrades as the class labels increase, as Dis-

tillCLIP achieves 76.78% (85.47%) CIFAR-10 and 84.3% (86.79%) STL-10

accuracy but 29.35% (45.1%) on CIFAR-100. However, we note that Dis-

tillCLIP achieves only 3.38% (3.88%) on Oxford-IIIT Pet despite it having

fewer classes compared to CIFAR-100. We believe that DistillCLIP’s zero-

shot performance is therefore dependent on the granularity or similarity of

classes i.e. it is easier to classify between dogs and cats than it is to classify

between an American Bulldog and an American Pit Bull Terrier. CIFAR-10

and STL-10 have relatively more easily separable classes (e.g. airplane vs

cat) compared to CIFAR-100 (e.g. shrew vs squirrel). To test our hypothesis,

we perform an additional evaluation on Oxford-IIIT Pet but using coarse la-

bels. Rather than classify between 37 breeds of cats and dogs, we group all

labels according to cat and dog superclasses. With more conceptually easily

separable labels, we improve zero-shot performance to 97.83%, with is also

the amount of retention of teacher accuracy on the dataset using the same
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Dataset # Classes CLIP DistillCLIP

CIFAR-10 [28] 10 89.83 76.78

CIFAR-100 [28] 100 65.08 29.35

STL-10 [9] 10 97.13 84.3

Oxford-IIIT Pet [36] 37 87.21 3.38

Oxford-IIIT Pet (coarse) [36] 2 100.00 97.83

Table 4.1: Zero-shot image classification results.

Dataset # Classes CLIP DistillCLIP

CIFAR-10 [28] 10 94.82 95.71

CIFAR-100 [28] 100 79.43 81.86

STL-10 [9] 10 98.56 98.63

Oxford-IIIT Pet [36] 37 93.44 92.29

Oxford-IIIT Pet (coarse) [36] 2 99.93 99.73

Table 4.2: Linear probe evaluation results.

superclasses.

4.2 Linear Probe Evaluation

Table 4.2 presents classification results for linear probe evaluation. We

observe that DistillCLIP achieves better classification results with linear

probe evaluation compared to zero-shot transfer on all datasets. Even when

DistillCLIP attains only 3.38% accuracy with zero-shot transfer on Oxford-

IIIT Pet, it achieves 92.29% accuracy on the same dataset in linear probe

evaluation. Retention of teacher performance is also much higher under
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Dataset # Classes CLIP DistillCLIP

ImagenetV2 [41] 1000 55.79 6.17

ImageNet-A [22] 200 31.37 4.55

Table 4.3: Zero-shot transfer results on distribution shift datasets.

linear probe evaluation, with retention only going as low as 98.77% on the

evaluated benchmarks. Furthermore, on CIFAR-10, CIFAR-100, and STL-

10, DistillCLIP actually achieves higher linear probe classification that the

full-sized CLIP. This implies that although DistillCLIP embeddings are dif-

ficult to use straight out of the box to use for zero-shot image classification,

they are informative enough to be linearly separable, even more so than

embeddings from the original CLIP.

4.3 Robustness to Natural Distribution Shift

We present our results for zero-shot classification on natural distribution

shift datasets in Table 4.3. We achieve relatively low accuracies on both

datasets, only retaining 11.06% and 14.5% of teacher accuracy on Ima-

genetV2 and Imagenet-A, respectively. Radford et al. [38] pose the question

of whether CLIP’s robustness to ImageNet distribution shift is attributable

to its nature as a zero-shot model, its own large training distribution, or

its natural language supervision. As DistillCLIP is also a zero-shot model

with implicit natural language supervision,1 we believe that the disparity

in teacher and student performance may be attributed to the 400M image-
1Although DistillCLIP is not explicitly trained with natural language supervision us-

ing an InfoNCE loss like CLIP, it is still implicitly trained with such as the intra-modal
similarity maps distilled during training are a result of natural language supervision.
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Model Accuracy

CLIP 65.02

DistillCLIP 64.59

Table 4.4: Video accident recognition results.

text dataset used to train CLIP. Such a scale captures a large distribution

of images and texts and contributes to CLIP’s robustness. Although knowl-

edge distillation aims to teach the student to generalize to data in the same

manner as the teacher, it is possible that using only the ∼3M data points

in Conceptual Captions 3M was not enough to teach the student. However,

this is only a hypothesis; as we currently do not have the computational re-

sources to use similarly large datasets, we leave it to future works to inves-

tigate the relationship between the amount of training data and distillation

performance.

The difference in robustness may also explain why DistillCLIP has

more easily linearly separable image and text vectors than CLIP. In CLIP’s

attempt to be robust and account for a wider distribution of images and

texts, its embeddings occupy several spaces in semantic space to the point

of being difficult to separate with a multidimensional plane. Meanwhile,

DistillCLIP does not cater to this wider distribution and instead produces

simpler representations, resulting in poorer zero-shot classification perfor-

mance. However because of this, it is much easier to linearly separate its

embeddings.
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Params FLOPs

Model Vision Model Text Model Total Vision Model Text Model Total

CLIP 87.5M 66.2M 151.3M 8.8 GFLOPs 6 GFLOPs 14.8 GFLOPs

DistillCLIP 21.7M 44.2M 66.1M 9.2 GFLOPs 3 GFLOPs 12.2 GFLOPs

Table 4.5: Size and speed of CLIP and DistillCLIP

4.4 Video Accident Recognition

The classification accuracy on the video accident recognition dataset are

shown in Table 4.4. Although DistillCLIP only achieves 64.59%, the full-size

CLIP attains 65.02%, resulting in 99.34% retention of teacher performance.

Again we note that the goal is not the maximize student performance, but

the ability of the student to match teacher performance.

4.5 Size and Speed Comparison

We compare the parameter counts and FLOPs of CLIP and DistillCLIP in

Table 4.5. We observe that DistillCLIP has around 43.69% the parameters

and 82.43% the FLOPs of the teacher CLIP. A large part of the parameter

saving can be attributed to the use of ViT-S/16 student vision encoder, which

is 24.8% the size of the teacher’s ViT-B/32 vision encoder. However, we ob-

serve that the savings in FLOPs are instead more attributable to the text

encoder, which has 50% the FLOPs of the teacher’s. We believe that this is

due to the ViT-S/16 using a patch size of 16, which creates a longer sequence

of tokens during inference compared to the teacher.



CHAPTER V

CONCLUSION

We propose a knowledge distillation scheme for CLIP. Our method distills

the inter and intra-modal similarity maps of the teacher with squared l2

norm losses.

Table 5.1 summarizes our results. ↑ and ↓ respectively indicate “high

better” and “lower better” for evaluation metrics. Results highlighted in

blue and red indicate outcomes we found to be satisfactory and unsatisfac-

tory, respectively. Our distilled CLIP, DistillCLIP, is successfully smaller

and faster than the teacher CLIP by being 43.69% the teacher’s size teacher

and having 82.43% the FLOPs of the teacher. We observe that the zero-shot

performance of DistillCLIP, our distilled CLIP, is sensitive to the granu-

larity of class labels and better matches teacher performance when using

conceptually easily separable coarse labels. As a result, DistillCLIP only re-

tains 63.81% of teacher performance on zero-shot transfer averaged across

our evaluation datasets. However, the embeddings produced by DistillCLIP

are still comparably informative. On linear probe evaluation, DistillCLIP

has a considerably smaller deficit compared to the teacher and can even

surpass the teacher on some datasets, leading to a 100.53% retention rate

averaged across evaluation datasets. DistillCLIP does not contain the ro-

bustness properties of CLIP, preserving only 12.28% of teacher performance

averaged across two distribution shift datasets. This may be related to its

better performance in linear probe evaluation compared to zero-shot trans-

fer, although it is currently beyond the scope of this study to thoroughly
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investigate. Lastly, we show DistillCLIP can closely follow the performance

of CLIP on a video accident recognition task with a 99.34% retention rate.

Future studies can further this work by investigating other possible

distillation signals and losses, expanding the dataset benchmarks used in

evaluations, evaluating on other vision-language tasks such as visual ques-

tion answering, and exploring the role of dataset size during distillation.
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CLIP DistillCLIP Retention

Parameters ↓ 151.3M 66.1M 43.69

FLOPs ↓ 14.8 GFLOPs 12.2 GFLOPs 82.43

Zero-Shot Transfer ↑

CIFAR-10 [28] 89.83 76.78 85.47

CIFAR-100 [28] 65.08 29.35 45.1

STL-10 [9] 97.13 84.3 86.79

Oxford-IIIT Pet [36] 87.21 3.38 3.88

Oxford-IIIT Pet (coarse) [36] 100.00 97.83 97.83

Average 63.81

Linear Probe Evaluation ↑

CIFAR-10 [28] 94.82 95.71 101.25

CIFAR-100 [28] 79.43 81.86 102.81

STL-10 [9] 98.56 98.63 100.001

Oxford-IIIT Pet [36] 93.44 92.29 98.77

Oxford-IIIT Pet (coarse) [36] 99.93 99.73 99.80

Average 100.53

Robustness to Natural Distribution Shift ↑

ImagenetV2 [41] 55.79 6.17 11.06

ImageNet-A [22] 31.37 4.55 14.5

Average 12.28

Video Accident Prediction ↑ 65.02 64.59 99.34

Table 5.1: Summary of results.
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APPENDIX A

MODEL CARD

We present the model card [32] of DistillCLIP in Table A.1.

Model Details

Organization devel-

oping model

ALIVE

Model date June 2023

Model version Version 1



35

Model type Image encoder is a ViT-S/16. Text encoder is a

6-layer Transformer encoder. The final embed-

ding size is 256.

A more detailed list of hyperparameters can be

found below:

Hyperparameter Value

batch size 84

optimizer AdamW

learning rate 3e−5

weight decay 1e−1

AdamW β1 0.9

AdamW β2 0.98

AdamW e 1e−6

learning rate decay cosine

warm-up steps 10,000

training steps 33,513

For model hyperparameters, please refer to Ap-

pendix B.

Paper or other re-

source for more infor-

mation

DistillCLIP: Knowledge Distillation of Con-

trastive Language-Image Pretrained Models

Citation details Ramos, P., Alampay, R., and Abu, P. [2023], ‘Dis-

tillCLIP: Knowledge Distillation of Contrastive

Language-Image Pretrained Models’.
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Where to send ques-

tions or comments

about the model

patrick.john.ramos@obf.ateneo.edu

Intended Use

Primary intended

uses

Research on vision-language models e.g. natu-

ral language supervised image classification, vi-

sual question answering, text-to-image synthe-

sis

Primary intended

users

Researchers in the field of vision-language rep-

resentation learning

Out-of-scope use

cases

In-the-wild applications e.g. industrial deploy-

ment

Factors

Relevant factors The training data, Conceptual Captions 3M,

may contain biases that may make performance

different for members of different social groups.

Metrics

Model performance

measures

Classification accuracy

Variation approaches We only distill CLIP once due to computational

expenses.

Evaluation Data

patrick.john.ramos@obf.ateneo.edu
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Datasets CIFAR-10, CIFAR-100, STL-10, Oxford-IIIT

Pet, ImageNetV2, ImageNet-A, Aadv

Training Data

Training data Conceptual Captions 3M

Quantitative Analyses

Quantitative results Please refer to Table 5.1.

Ethical Considerations

Data The training data, Conceptual Captions 3M,

may contain biases that may make performance

different for members of different social groups.

Table A.1: Model Card



APPENDIX B

MODEL ARCHITECTURE CONFIGURATIONS

We compare the model architectures of the teacher and student models in
Table B.1.

Hyperparameter CLIP-ViT-B/32 (teacher) DistillCLIP (student)

Vision

encoder

layers 12 12

hidden size 768 384

intermediate size 3072 1536

attention heads 12 6

image size 224 224

patch size 32 16

Text

encoder

layers 12 6

hidden size 512 512

intermediate size 2048 2048

attention heads 8 8

sequence length 77 77

vocabulary size 49408 49408

Projection size 512 256

Table B.1: Teacher and student model configurations.



APPENDIX C

WEB DEMO

We release a web demo for zero-shot image classification with DistillCLIP at
https://huggingface.co/spaces/Ramos-Ramos/distillclip. An
example of the demo interface in use is presented in Figure C.1. The user
provides an image, classes separated by commas, and prompts separated by
semi-colons. Given these inputs, the demo performs zero-shot image clas-
sification using the method discussed in Section 3.3.2. Image-text cosine
similarity scores are softmaxed to create a probability distribution. As mul-
tiplying logits prior to softmax can create larger discrepancies between final
scores without changing their order, we multiply the similarity scores by the
temperature of the teacher CLIP (e4.6052) before the softmax.

Figure C.1: DistillCLIP zero-shot image classification web demo.

https://huggingface.co/spaces/Ramos-Ramos/distillclip
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