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Abstract. Relative representations allow the alignment of latent spaces
which embed data in extrinsically different manners but with similar rel-
ative distances between data points. This ability to compare different
latent spaces for the same input lends itself to knowledge distillation
techniques. We explore the applicability of relative representations to
knowledge distillation by training a student model such that the rel-
ative representations of its outputs match the relative representations
of the outputs of a teacher model. We test our Relative Representa-
tion Knowledge Distillation (RRKD) scheme on supervised and self-
supervised image representation learning with MNIST and show that
an encoder can be compressed to 47.71% of its original size while main-
taining 91.92% of its full performance. We demonstrate that RRKD is
competitive with or outperforms other relation-based distillation schemes
in traditional distillation setups (CIFAR-10, CIFAR-100, SVHN) and
in a transfer learning setting (Stanford Cars, Oxford-IIIT Pets, Oxford
Flowers-102). Our results indicate that relative representations are an
effective signal for knowledge distillation. Code will be made available at
https://github.com/Ramos-Ramos/rrkd.

Keywords: Knowledge distillation · Relative representations · Latent
space.

1 Introduction

Although the latent spaces learned by neural networks are expected to be solely
reliant on their data and optimization constraints, stochastic factors such as ran-
dom weight initialization cause models with similar constraints to learn different
latent spaces. However, these spaces are actually intrinsically similar and differ
by a quasi-isometric transformation [15]. Relative representations [12] leverage
this phenomenon and re-express latents of the same input but in different spaces
as vectors of similarities to other “anchor” latents in their respective vector
spaces. This method of representing latents is invariant to isometry and allows
the alignment of latent spaces for zero-shot communication between them.
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The idea of having separate models trained on the same task with the same
data draws similarities with knowledge distillation [6], where a smaller student
model must generalize to data in a manner similar to a larger teacher one. This
is usually done by using one or more outputs of the teacher model (e.g. final class
logits, intermediate features) as a supervisory signal for training the student.

There are two factors driving the intuition that relative representations can
be used for knowledge distillation. Firstly, [12] report that in a collection of mod-
els optimized with the same objective across different hyperparameters, model
performance is correlated with latent space similarity to a reference gold model.
Secondly, computing relative representations is fully differentiable, allowing their
similarity to be used as a knowledge distillation objective.

We conduct a preliminary but extensive investigation exploring the appli-
cability of relative representations to knowledge distillation in an image repre-
sentation learning setting. Our Relative Representation Knowledge Distillation
(RRKD) method consists of converting student and teacher outputs to relative
representations and optimizing a matching objective between them as opposed
to the original representations. Our contributions are as follows:

– We design a knowledge distillation scheme, called RRKD, centered around
matching the relative representations of a student to those of a teacher.

– In both supervised and self-supervised image representation learning experi-
ments with MNIST, we demonstrate that relative representations are capable
of distilling knowledge in a teacher-student framework.

– We show that RRKD can outperform similar relation-based distillation meth-
ods across a variety of benchmarks, with results extending to transfer learn-
ing.

– Through an ablation study, we show that online selection of anchors by using
in-batch references is an effective anchor selection strategy.

2 Related Work

Knowledge distillation [6] is a model compression method that trains a small
student network to mimic the behavior of a large reference teacher model. Rather
than rely solely on supervision from the training data, students learn from targets
created by the teacher. The classical form of knowledge distillation is seen in the
classification setting, where the student’s logits are are matched to “soft target”
logits generated by the teacher alongside the ground truth hard labels from the
training data.

FitNets [20] improve on classical distillation by introducing feature repre-
sentations from intermediate layers as targets. When using intermediate repre-
sentations during distillation, the outputs of “guided” layers in the student are
matched to those of “hint” layers in the teacher. Intermediate feature-based dis-
tillation methods may also distill transformations of the intermediate features
such as attention maps [24] or neuron selectivities [7] computed from CNN fea-
ture maps.
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While knowledge distillation methods typically distill the final or interme-
diate encodings of inputs, there exist several relation-based distillation meth-
ods that instead distill the relationships between data points, like our pro-
posed method. Such methods distill the relationships between triplets or pairs of
data. Prior works have formulated these relationships as distances in embedding
space [23, 16], instance relation graphs [11], joint probability distributions [18],
and correlations [19]. Most similar to our work is similarity-preserving knowl-
edge distillation [22], which distills the l2-normalized outer product of a batch of
model activations with itself. We also use the outer product of model activations
as a distillation signal, but perform l2-normalization before the outer product
to create a cosine similarity map of instances within a batch, as discussed in
Section 4.

3 Background: Relative Representations

Given training data X and an encoder ϕ : X → Rd, the standard d-dimensional
embedding ϕ(x) ∈ Rd for x ∈ X is referred to as the absolute representation of x.
Relative representations instead express x in terms of its similarity to, or relative
to, other points in X. Specifically, x is represented as an m-dimensional vector
of similarities of its absolute representation to the absolute representations of a
set of m anchor points.

To create a relative representation, we select a set of m anchor points from
the training data, denoted as A ⊆ X. The relative representation of x ∈ X is
then computed as

r(x) = ⟨s(ϕ(x), ϕ(A0)), . . . , s(ϕ(x), ϕ(Am−1))⟩ ∈ Rm, (1)

where s(·, ·) is a similarity function producing a scalar similarity score for two
latents. This effectively projects x to an m-dimensional space where each dimen-
sion is its similarity to one of the m anchors.

4 Relative Representation Distillation

Fig. 1 provides an overview of RRKD. Given a batch of n inputs, we extract
teacher and student absolute representations Zt, Zs ∈ Rn×d using a frozen
teacher encoder ϕt and a learnable student encoder ϕs, respectively. The teacher
and student absolute representations are then converted to relative represen-
tations Vt, Vs ∈ Rn×n. Computing relative representations for zero-shot com-
munication between latent spaces typically involves choosing a set of anchors
beforehand to use in computing all relative representations. However, instead of
selecting a fixed set of anchor points, we use all embeddings in the batch as an-
chors akin to the intra-batch comparisons performed in contrastive learning [3].
This anchor selection method is compared to other strategies in an ablation
study in Section 5.4. We follow [12] and choose cosine similarity as the simi-
larity function s, resulting in Vt and Vs being n × n cosine similarity maps of
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Fig. 1. Relative representation knowledge distillation overview. Teacher ϕt and student
ϕs respectively encode inputs X into latents Zt and Zs. The latents are converted to
relative representations Vt and Vs using themselves as anchors. A cosine similarity-
based loss is used to encourage Vs to match Vt. ϕt is frozen.

embeddings to each other. The relative representations can be formulated as

Vm = Z̃mZ̃m

⊺
, (2)

where Z̃m is a row-wise l2-normalized Zm and m ∈ {t, s} refers to the teacher
(t) and student (s) models. This computes the cosine similarity map by taking
the outer product of the l2-normalized absolute representations.

The distillation loss LD then encourages the student’s relative representations
to match those of the teacher’s by taking the negative average logarithm of
their pairwise cosine similarities, which are rescaled between 0 and 1. We add a
small constant ϵ = 1e−8 to the rescaled cosine similarity before the logarithm
for numerical stability. The use of cosine similarity is based on experiments
by [12] using the similarity of a network’s relative representations with those of
a reference model as a performance proxy.

LD = − 1

n

n−1∑
i=0

log

(
Vt,i · Vs,i + 1

2∥Vt,i∥2∥Vs,i∥2
+ ϵ

)
(3)

LD assumes that the networks ϕt and ϕs are encoders that project to a latent
space, such as models trained with self-supervised learning, rather than super-
vised classifiers that produce class logits. While the logit space can be considered
a latent space where the dimensions correspond to each class, permutation sym-
metries in such a space may result in student relative representations that are
similar to a teacher’s but assign the highest scores to the wrong class. Therefore
it is not recommended to use the logits as the latent space for computing relative
representations.
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Nevertheless, it is still possible to distill a teacher classifier into a student
encoder using relative representations. Simply removing the teacher’s classifica-
tion head results in an encoder. The distillation then happens in the latent space
prior to the projection to class logits. Furthermore, class labels can be used in
distillation if available. When distilling a model with labels Y , we add a classi-
fication head on top of ϕs which projects Zs into class label predictions P and
add the classical cross entropy classification loss LCE to the total loss. The loss
for distilling models with labels is then a linear combination of the distillation
and cross entropy losses:

LL = λDLD + λCELCE(P, Y ), (4)

where λD and λCE are weights for the distillation and cross entropy losses re-
spectively. In practice, we set λD = 1 and use λCE = 1 when distilling with class
labels and λCE = 0 when distilling without. Setting λCE = 0 makes the loss
function equivalent to Equation 3.

Note that the use of relative representations always results in latents of the
same size between the teacher and student, which frees us from the usual restric-
tion in knowledge distillation of needing the same dimensionality for teacher and
student representations.1 This means not only can student models be “shorter”
(less layers) than the teacher, but they can also be “thinner” (smaller dimension
size).

5 Experiments

We evaluate RRKD in an image representation learning setting. We perform
distillation experiments for image encoders trained with supervision and self-
supervision, compare RRKD to other relation-based distillation schemes, and
perform an ablation study on the method of selecting anchors. Note that in all
experiments, the aim is not to maximize raw performance on the target dataset
but to maximize the preservation of a teacher’s performance.

5.1 Distillation Compared to Training from Scratch

We distill both self-supervised and supervised MLP encoders trained on MNIST
using RRKD. We evaluate all models with linear probe evaluation using a logis-
tic regression classifier. This includes models distilled with class labels, as our
primary goal is to use RRKD to train student encoders rather than classifiers,
and the standard protocol for evaluating encoder representations is linear probe
evaluation [3, 1]. Furthermore, we find it more effective to discard the classifica-
tion head after distillation and attach a new linear head.

1 Some works try to address this by projecting the student outputs with a learnable
linear layer to have the same dimensionality as the teacher [20, 8]. Our work is similar
in that regard as computing the relative representations can also be considered a
linear projection, but our method does not require learning the projection weights.
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Table 1. Distillation results for self-supervised MNIST models.

Model Parameter Count Linear

Teacher (AE-64) 109K 87.99
Baseline (AE-32) 52K 74.14
Student (AE-32) 52K 80.88

Table 2. Distillation results for supervised MNIST models.

Model Parameter Count Linear

Teacher (MLP-1200) 2M 95.64
Baseline (MLP-32) 26K 90.87
Student (MLP-32) 26K 92.94

To investigate the value of distillation compared to simply training the smaller
model from scratch, students are compared to baselines which follow the same
architecture but are trained in the same manner as the teacher. Following a
hyperparameter sweep across learning rates {1e−1, 1e−2, 1e−3} (extended until
1e−8 for the self-supervised baseline), we train all models for 20 epochs using
SGD with learning rate 1e−1 and batch size 128, except for the self-supervised
baseline, which was trained with learning rate 1e−8. The models in the self-
supervised MNIST encoder distillation experiment use 0.9 momentum to accel-
erate optimization.

Self-supervised MNIST We train an MLP auto-encoder with hidden layer
sizes {128, 64, 128} on MNIST with an MSE pixel reconstruction loss. We use
the encoder of the auto-encoder as the teacher and distill it into a student MLP
with layer sizes {64, 32}. This student can be viewed as the encoder of an auto-
encoder with hidden layer sizes {64, 32, 64}, which serves as the baseline. All
models use ReLU activation and 0.5 dropout. Distillation is performed using the
standard relative representation loss described in Equation 3.

We report linear probe evaluation accuracies averaged across three trials
and model parameter counts in Table 1. With only 47.71% of the number of
parameters of the teacher, the student is able to retain 91.92% of the teacher’s
performance. The student also achieves a higher accuracy than a baseline trained
from scratch, outperforming it by 6.74%.

Supervised MNIST We train an 3-layer MLP with hidden layer sizes {1200,
1200} on MNIST classification. Stripping the classification layer leaves a 2-layer
MLP teacher encoder projecting to a 1200-dimensional latent space. The student
is a 2-layer MLP that has one hidden layer of size 32 and projects to 32 dimen-
sions. ReLU activation and dropout of 0.5 are also used. Relative representation
distillation is performed using class labels with the loss described in Equation 4.

The average accuracies over three trials and model sizes are presented in
Table 2. The student preserves 97.18% of the teacher’s accuracy while being
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Table 3. Comparison to other relation-based distillation methods. Best non-teacher
results are indicated in bold.

Method/Model Parameter Count CIFAR-10 [10] CIFAR-100 [10] SVHN [13]

Teacher 11M 88.13 60.72 94.66
SPKD [22] 1M 85.85 56.35 94.56
LPKD [2] 1M 85.56 57.04 94.49
RRKD (ours) 1M 86.21 57.48 94.55

merely 1.3% of its size. Furthermore, the student outperforms the baseline by
2.07%.

These MNIST experiments demonstrate that transferring teacher knowledge
with RRKD is capable of producing compressed encoders that are more perfor-
mant than ones that were trained from scratch.

5.2 Comparison to Other Relation-based Distillation Methods

We compare our relative representation distillation scheme to SPKD [22] and
LPKD [2], two other relation-based distillation methods. SPKD distills a simi-
larity map computed by the row-wise l2-normalized outer product of latents from
a teacher hint layer to that of a student guided layer, and can be combined with
a cross entropy loss with class labels. In our experiments, we use γ = 1 and follow
the SPKD authors by only using the last hidden layers as hint and guided layers.
Meanwhile, LPKD distills a squared error distance map and was proposed to be
combined with a cross entropy loss with class labels and a soft cross entropy
loss with teacher logits. We use γ = 1.5, λ = 2, and τ = 0.5. For both methods,
please refer to [22] and [2] for an explanation of these hyperparameters.

Across CIFAR-10 [10], CIFAR-100 [10], and SVHN [13], we train a super-
vised ResNet-18[5] teacher with a final hidden layer of 512. The teacher is then
distilled using the distillation losses and class labels into a ResNet-9 encoder
with a 256 embedding size, which we refer to as ResNet-9×0.5. Images are kept
at their original 32×32 resolution and are augmented only with random hor-
izontal flipping. We train and distill for 50 epochs on CIFAR-10 and CIFAR-
100 and for 20 epochs on SVHN. Models are optimized with SGD with learn-
ing rate 1e−1 (determined after a hyperparameter sweep across learning rates
{1e−1, 1e−2, 1e−3}) and batch size 128. Momentum of 0.9 is used during distil-
lation to be consistent with the use of momentum across benchmark distillation
methods. These hyperparemters are also used in subsequent experiments.

Test accuracies on each dataset is reported in Table 3. RRKD outperforms
baseline methods on CIFAR-10 (+0.36% from next best method) and CIFAR-
100 (+0.44%), and has only a small deficit (−0.01%) compared to the best
performing method on SVHN, all while being 11.05% the size of the teacher
on average. These results indicate that RRKD can perform on par with other
relation-based distillation methods if not better.
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Table 4. Comparison to other relation-based distillation methods on transfer learning
with distillation.

Method/Model Parameter Count Stanford Cars [9] Oxford-IIIT Pets [17] Oxford Flowers-102 [14]
Teacher 21M 78.60 90.52 85.76
SPKD [22] 11M 72.63 77.19 80.50
LPKD [2] 11M 70.47 73.81 77.27
RRKD (ours) 11M 76.79 81.22 84.62

Table 5. Anchor selection ablation study results.

Anchor Selection Method Anchors MNIST Test Accuracy

In-batch 128 81.42
Random 128 80.21
Per class 130 80.59
Best per class 130 80.52

5.3 Transfer Learning

We also conduct distillation experiments in the transfer learning setting, where
a pretrained student is fine-tuned while being distilled from a pretrained teacher
already fine-tuned on the target dataset. Teachers are ResNet-34s pretrained on
ImageNet [4] and fine-tuned on Stanford Cars [9], Oxford-IIIT Pets [17], and
Oxford Flowers-102 [14]. Students are ImageNet-pretrained ResNet-18s. Images
are augmented with Inception-style random cropping [21] to 224×224, horizontal
flipping, and color jitter. We train and distill models for 20 epochs on Stanford
Cars and Oxford-IIIT Pets and for 50 epochs on Oxford Flowers-102.

We report the accuracies of the distilled models in Table 4. RRKD outper-
forms other methods across all datasets. Averaged across the three datasets, the
distilled student is capable of retaining 95.36% of the teacher’s original accu-
racy with 52.64% the parameter count of a full teacher, showing that distilling
relative representations can also be extended to transfer learning.

5.4 Anchor Selection

We perform an ablation study on the anchor selection method. We evaluate the
linear probe evaluation of encoders distilled from the self-supervised MNIST
MLPs described in Section 5.1 using four different anchor selection strategies:

– In-batch. This is the main method used in this study, described in Section
4. We use all embeddings in the batch as anchors, with a batch size of 128.

– Random. We select a fixed set 128 of random embeddings to be used as
anchors throughout training.

– Per class. We randomly sample 13 examples per class to create a fixed set
of 130 anchors. We choose 13 examples in order to have the smallest number
of anchors greater than or equal to the number of in-batch anchors while
giving each class equal representation.
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– Best per class. This is similar to the previous method of choosing 13
examples per class but we instead choose the 13 instances per class that
the teacher model is most confident in. For each class, we identify the 13
correctly classified examples with the largest probability for that particular
class according to the teacher.

We show the linear probe evaluation results averaged across three trials in
Table 5. Using in-batch anchors provides the highest linear probe evaluation,
even when other anchor selection methods (per class, best per class) have more
anchors. We hypothesize this may be because in-batch anchors expose the stu-
dent to an larger number of reference points during training as using in-batch
anchors means that the anchors change at each step and that all data points in
the dataset are treated as anchors at some point.

6 Conclusion

We devise a knowledge distillation method based on relative representations,
called RRKD. In image representation learning, student image encoders trained
with RRKD are more performant than similar models trained without distilla-
tion. On a variety of image classification datasets, students trained with RRKD
are competitive with if not better than other relation-based distillation methods.

Future works can further this study by exploring the scoring function used
in generating relative representations alongside the loss function for comparing
these representations. These experiments can also be extended to other architec-
tures such as Transformer-based models and to other domains such as language
and graph representation learning.
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