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Abstract. The empirical risk minimization approach of contemporary
machine learning leads to potential failures under distribution shifts.
While out-of-distribution data can be used to probe for robustness is-
sues, collecting this at scale in the wild can be difficult given its nature.
We propose a novel method to generate this data using pretrained foun-
dation models. We train a language model to generate class-conditioned
image captions that minimize their cosine similarity with that of corre-
sponding class images from the original distribution. We then use these
captions to synthesize new images with off-the-shelf text-to-image gen-
erative models. We show our method’s ability to generate samples from
shifted distributions, and the quality of the data for both robustness
testing and as additional training data to improve generalization.

Keywords: robustness to distribution shift · synthetic data · foundation
models.

1 Introduction

Contemporary machine learning models are heavily reliant on data, to the point
that at smaller scales of training data, models fail to adapt to novel datapoints
outside their original training distribution [6]. A classic illustration of this is im-
age classification: if images of cows in a model’s training distribution frequently
involved grassy fields, the said model is likely to fail in identifying cows when
they are present in beaches [3]. This phenomenon is a consequence of combin-
ing the empirical risk minimization paradigm and a non-large-scale data regime.
With a limited training distribution, there is less information available to models
for them to disentangle spurious correlations from target labels, and thus these
shortcuts become leveraged as predictive features despite their lack of robustness
under distribution shifts [6, 20].

To address this issue in practice, researchers evaluate their models on test
sets in order to examine how well a model adapts to data it has explicitly not
been optimized for during training. However, these test sets tend to be inde-
pendent and identically distributed, and potentially share the same underlying
distribution as the training data [20], thus eliminating the effectiveness of using
a test set to probe the ability of a model to adapt to new domains. In line with
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this, studies have taken steps towards building specifically-engineered datasets
and benchmarks to probe models’ abilities to generalize to out-of-distribution
data [13, 8].

While many traditional datasets are carefully sourced and manually anno-
tated, recent advancements in generative modelling and foundation models have
proven able to generate clean, usable data at scale without being restricted to
natural data [24, 11, 1]. More relevant to this study, they have also been used to
successfully simulate distribution shifts in data [22, 12].

A persistent question in the field of synthetic distribution shifts is how far
of a distribution shift can we successfully simulate, and what methods make
synthetic distribution shifts possible. We continue this line of work by proposing
a novel method for this task. We train a language model to generate captions that
maximize their CLIP [16] distance from reference classes, and use these captions
to steer generative image models towards outputs that align with predefined
classes but do not represent the original distribution. Our method generates
data that is on average 15% lower in CLIP similarity to images from the same
class when compared to in-distribution data. As a robustness benchmark, our
method reduces classification accuracy by approximately 40%. Our generated
data also leads to performance gains when leveraged as additional training data.

2 Related Work

Given a distribution of training data, an out-of-distribution dataset would intro-
duce some distribution shift relative to the original distribution. Specifically, if
the training distribution is said to be the result of some causal model or environ-
ment E, the new dataset should be sampled from E′, the product of intervening
on or changing the joint distribution of E. When evaluated on a new joint dis-
tribution, model A is said to be more robust than model B if it sees a smaller
drop in performance resulting from leveraging reliable features that are invari-
ant across domains; less robust models would be exposed for relying on spurious
correlations that are not invariant across domains.

Probing for robustness is traditionally performed with curated datasets, many
of which require manual annotation or image post-processing. With ImageNet
assumed as a train set for the task of image classification, distribution shifts
include varying viewpoints [2], rendering images in different styles [8, 24], cor-
rupting or perturbing the images [9], etc. Another popular approach would be
to specifically engineer an adversarial benchmark, where data is selected partic-
ularly based on a reference model’s inability to correctly classify the data with
high confidence [10].

As curated datasets, these methods are essentially limited by what data is
naturally available. Generative models have provided ways to artificially induce
distribution shifts in data, such as texture changes [15] and optimally adversarial
augmentations [7]. Particularly relevant to this study are methods such as [22]
and D3S [12], which leverage recent advancements in diffusion models [4, 18]
to generate out-of-distribution data for image classification. While these works
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either utilize simple yet effective prompting techniques with frozen models, or
leverage gradient information in the diffusion process, our method investigates a
new space for optimizing generative model outputs for out-of-distribution data.
We specifically investigate optimizing not the diffusion process, but a text gen-
eration process prior to text-guided diffusion instead. We discuss this further in
Section 3.

3 Distribution-shifted Data Generation

Given a distribution of n images IC := {I0, I1, . . . , In} sampled from some class
C, our proposed method generates images from that class that fall under C but
lie away from the original distribution. We achieve this by leveraging a pretrained
text-to-image model G. Unlike previous works [22, 12], we leave the mechanics
of G untouched but optimize the text generation process that would steer G.

In order for the generated images to lie away from the original distribution,
the corresponding texts that will guide the image generation must be sensitive
to the original data and not represent its distribution. To implement this, we
consider the goal of maximizing the distance of our generated captions, and
consequently generated images, from the original distribution in a shared image-
text embedding space modelled by some multimodal embedder ϕ(·). Thus, we
finetune a generative language model L to generate a caption PC conditioned
on a given class C that minimizes the following objective function R:

R(PC) = s

(
ϕ(PC),

∑n
i=0 ϕ(Ii)

n

)
(1)

where s(·, ·) measures the similarity between two points in an embedding space,
with higher values indicating stronger similarity. This value compares a gener-
ated caption with the mean of ϕ-encoded images of IC , thus minimizing this
value would maximize the distance of the caption from the original data distri-
bution. Because a language model can create arbitrary noise to maximize the
distance of its outputs from a reference distribution in the embedding space, we
further modify R by returning the lower bound of s for any any non-sensical
(incomplete sentence and failure to mention class C in prompt) output. Gener-
ated captions can then be used as prompts for G without further finetuning or
modifications.

4 Experiments

4.1 Implementation

For our experiments, we focus on the distribution of images found in ImageNet.
Specifically, we focus on the 86 class subset intersection between ImageNet-A [10]
and ImageNet-R [8] for comparability purposes. To calculate mean embeddings
for each class, we sample 128 images per class.
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Instruction: “Write a brief (<= 20 words, 
one sentence) image caption featuring 
the subject with unusual 
characteristics, including but not 
limited to an unusual style, an unusual 
location, unusual objects, and unusual 
actions.”
Input: “flamingo

Alpaca-7B
“A flamingo stands atop a pile of Coke 
cans scattered on the beach, battling a 

robot in a game of mini-putt.”

GPT-2“image subject: flamingo
caption: ”

“A flamingo perched atop a pile of 
brightly-colored balloons, gazing 

intently into a deep, vast emptiness.”

prompt generate

supervised
fine-tuning

PPO

prompt generate
DeepFloyd

IF

generateprompt

Fig. 1: Overview of method.

“A bright yellow school bus 
cradles up a cobroad road filled 
with colorful balloons, orange 
skies, and a peaceful blue sky, 
amidst a smooth green hue of 

vibrant stars.”

“The school bus swerved down 
the track, its strange-looking 
driver screeching loudly as it 

sped through the streets.”

“A school bus standing in a 
meadow with bright lights, its 

seats only dimly lit with 
dimming lights.”

“An old school bus trundles 
down the cobblestone street, 
its bright colors shimmering in 

the sunlight.”

Fig. 2: Sample generated texts with corresponding generated images for the Im-
ageNet class “school bus”.

An overview of the generation pipeline is shown in Fig. 1. We leverage Deep-
Floyd IF, an open-access implementation of Imagen [19], for G; CLIP [16] for ϕ;
and base our L on GPT-2 [17]. Our similarity scorer s is cosine similarity. We
also use CLIP cosine similarity as a filter to remove low-quality data from our
generations, using a threshold of 0.2.

In training L, we first use an Alpaca-7B [23] to generate 16 sample captions
per ImageNet class to create 16000 examples of class-conditioned prompts. We
then use this data to perform supervised finetuning on a GPT-2 followed by
reinforcement learning with PPO [21].

For all reference methods, in order to maintain comparability as regards
image fidelity, we reimplement each method using the same generative image
model backbone, model precision, and diffusion sampling steps.

Sample generations of our method are presented in Fig. 2.

4.2 Measuring Distribution Shift

Table 1 describes our generated data compared to both the original data and
similar methods. Mahalanobis distance was calculated in CLIP space, reduced to
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Table 1: Distance metrics describing relation of datapoints to class mean.
Method CLIP similarity ↓ Mahalanobis distance ↑
Base distribution 83.50 7.90

Low-density [22] 70.26 24.70
D3S [12] 73.74 24.49
Ours 73.93 23.30
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Fig. 3: PCA-reduced plots of datapoints in CLIP space. Blue points represent
the original distribution while orange points represent our generated data.

64 dimensions via PCA. While our method does not outperform other methods
in CLIP similarity or Mahalanobis distance, we maintain similar performance
as regards maintaining a gap from the base distribution. Examples of this gap
can be visualized in Fig. 3, which shows examples in a PCA-reduced space.
Furthermore, Fig. 4 shows the percent reduction in cosine similarity of datapoints
to the class mean in CLIP space across all examined classes, with our method
only creating datapoints closer to the mean in one class while reducing similarity
by approximately 9.5% on average.

4.3 Probing Adversarial Ability

We also measure the strength of our distribution shift via zero-shot evaluation
on our data, where pretrained classifiers are expected to drop in accuracy under
stronger distribution shifts, assuming the model relies on spurious correlations
rather than causal features. The results of these experiments are seen in Table 2.
Though we do not outperform both methods, our method is able to reduce
classification accuracy by around 40% on each model, indicating the potential
for this method to act as a challenging benchmark for image models.

4.4 Use as Training Data

Aside from acting as a robustness benchmark, another potential use of out-
of-distribution data is to act as training data in order to widen the training
distribution and induce better generalization ability during inference. We fine-
tune a ConvNeXt-Atto [14] on data generated with our method as well as two
other synthetic distribution-shift methods, with 8 generated samples per class,
then evaluate performance gains in the out-of-distribution setting, in this case
ImageNet-A and ImageNet-R. Our results are seen in Fig. 6.
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Fig. 4: Percent reduction in average cosine similarity of generated datapoints in
a class compared to original datapoints from the same class, in CLIP space.

Table 2: Accuracy reduction of ImageNet classifiers on distribution shift valida-
tion datasets.

Method ConvNeXt-Atto [14] ViT-Tiny [5]

Low-density [22] -62.04 -58.73
D3S [12] -34.71 -43.04
Ours -39.51 -41.87

We show the most improvement on ImageNet-R, while introducing the least
improvement on ImageNet-A. We believe this to be attributed to the data gen-
eration process of each method. While our method produces a mix of realistic
and artistically rendered images, the other methods mainly produce photo-like
images. At the current data scale, the other methods have a greater impact for
ImageNet-A, which mainly includes photos, while our data has the most impact
for ImageNet-R, which does not exclusively focus on photos.

5 Conclusion

We introduce and explore the potential of a new method for generating synthetic
out-of-distribution data by focusing on the text generation process used to steer a
generative text-to-image model. We describe our method’s ability to successfully
generate samples that are distanced away from the original distribution, and
quantitatively report its ability to act as a test set for robustness probing and as a
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(a) ImageNet (b) Low-density [22] (c) D3S [12] (d) Ours

Fig. 5: Images of the ImageNet class “German shepherd” drawn from (5a) the
ImageNet training set, (5b) sampling from low-density regions, (5c) generating
images with different backgrounds, and (5d) our proposed method of generating
captions to guide out-of-distribution image generation.
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(a) ImageNet-A [10]
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(b) ImageNet-R [8]

Fig. 6: Accuracy improvements on adversarial datasets by fine-tuning on distri-
bution shift datasets.

train set to increase generalization ability. Future studies can explore this method
at larger scales with stronger foundation models or increased data generation.
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